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Introduction
Perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA,
DTXSID50723994) is a perfluoroalkyl ether acid (PFEA) produced
at a fluorochemical facility (“FayettevilleWorks”) in Bladen County,
North Carolina. In 2015, PFO5DoA was first identified in Cape Fear
River water samples collected downstream of the facility’s waste-
water discharge point.1 Approximately 280,000 people rely on public
water sourced from the lower Cape Fear River.2 The GenX Exposure
Study started in 2017 to characterize PFEA exposure in Cape
Fear River Basin, North Carolina, residents. We detected three
PFEAs—ethanesulfonic acid, 2-[1-[difluoro(1,2,2,2-tetrafluoroe-
thoxy)methyl]-1,2,2,2-tetrafluoroethoxy]-1,1,2,2-tetrafluoro- (also
known as Nafion by-product 2, DTXSID10892352); perfluoro
(3,5,7,9-butaoxadecanoic) acid (PFO4DA, DTXSID90723993);
and PFO5DoA—in blood serum from nearly all 344 participants
who resided in Wilmington, North Carolina, and provided blood
samples in 2017 and 2018.3

In 2018, serum samples were analyzed by liquid chromatogra-
phy coupled to high-resolution mass spectrometry (LC-HRMS).
At the time, an analytical standard for PFO5DoA was not com-
mercially available and we were unaware of other laboratories
analyzing serum for PFO5DoA, which limited interlaboratory
comparison opportunities. We have since discovered a mass inter-
ference in the calibration of our PFO5DoA analysis that resulted
in substantial underestimation of PFO5DoA concentrations; the
other per- and polyfluoroalkyl substances (PFAS) values were not
affected. This letter aims to correct previously reported serum
PFO5DoA concentrations.3

Methods

Sample Selection
In 2018, we analyzed 388 serum samples from 344 participants
(44 participants provided two samples) for 20 PFAS, including
PFO5DoA, across eight analytical batches,3 with 30 to 61 samples
per batch, but most batches had ∼50 samples. The PFO5DoA cali-
bration curve without the mass interference had poor linearity.

Because of the time lag between the original analysis and calibra-
tion error discovery, application of a new PFO5DoA calibration
curve to the original response ratios would have resulted in concen-
trations with substantial uncertainty. We chose to reanalyze a sub-
set of the 388 serum samples for PFO5DoA and use the reanalysis
results to predict corrected concentrations for the remaining sam-
ples that were not reanalyzed. To select samples for reanalysis, we
computed batch-specific summary statistics for PFO5DoA concen-
tration among the samples with detectable concentrations.3 We ran-
domly selected one sample within each octile for each batch to
provide data for calibration across the full range of concentrations
and randomly selected two samples with non-detectable levels per
batch to get a total of 80 samples for reanalysis.

PFO5DoA Reanalysis
An analytical standard for PFO5DoA was acquired from Fluoryx
Labs (Catalog no. FC23-PFO5DOANA). Perfluoro-n-[13C8]octanoic
acid (Catalog no. CLM-8005-1.2; Cambridge Isotope Laboratories)
was used as an internal standard for PFO5DoA quantitation. A 50-lL
aliquot of serumwasmixedwith 150 lL of coldmethanol containing
internal standards (1:00 ng=mL final concentration). The mixture
was vortexed and centrifuged at 10,000× g for 5 min. A 100-lL
aliquot of supernatant was mixed with 50 lL of water to produce a
final sample containing 50% methanol by volume. We used a fluo-
rinated column (Kinetex F5, 2:6 lm particle, 100 × 2:1 mm analyti-
cal column; part number 00D-4723-AN) from Phenomenex on a
Thermo Scientific Vanquish LC coupled to an Orbitrap Exploris
240.4 The method reporting limit (MRL) of 0:5 ng=mL PFO5DoA
corresponded to the lowest calibration standard which was within
30%of the true value.

Statistical Methods
The mass interference impacted the PFO5DoA calibration curve
but not the PFO5DoA mass spectrometer response for the sam-
ples, in which the unintended mass was absent. Therefore, we
kept the response ratios [ratio of PFO5DoA response to mass-
labeled perfluorooctanoic acid (PFOA) response] from the origi-
nal analysis in 2018 for all 388 samples. We also had PFO5DoA
concentrations for the 80 samples reanalyzed in 2022. The model
that best fit the data based on standard residual diagnostics, parsi-
mony, and stability through the range of 388 response ratios from
2018, was a two-part, piecewise, weighted least squares linear
regression model. The model was weighted by the inverse square
root of the 2018 response ratio to account for heteroskedasticity.
The model was fit without an intercept so that a 2018 instrument
response of 0 (which occurred for three samples) predicted a con-
centration of 0 ng=mL. Leave-one-out cross-validation was used
to assess the model’s goodness of fit; to get the predicted value
for each reanalyzed observation, that reanalyzed observation was
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removed from the dataset. The reduced dataset was used to obtain
the prediction for that observation according to the model.

Because the model aimed to predict sample concentrations as if
all samples were rerun in 2022, we applied the 2022 analytical
MRL (0:5 ng=mL) to determine detection frequency. We used
Spearman’s correlation to assess correlation between incorrect
2018 concentration and corrected 2022 concentration. For sum-
mary statistics calculation, values <MRL were assigned a value of
0:5p
2 (∼ 0:354 ng=mL). We estimated a bootstrap standard error (SE)

for the PFO5DoAmedian by resamplingmodel residuals. Residuals
of the original regression model were unweighted, resampled with
replacement, reweighted, and then added to the originalfitted values
in each bootstrap iteration to obtain a resampled dataset. Other sta-
tistical analyses (i.e., calculation of summed PFAS concentration in
serum and percent change in PFAS concentration from November
2017 toMay 2018 for repeaters) followed our previousmethods.3

All phases of the study were conducted in compliance with
the North Carolina State University institutional review board.

Results and Discussion
Thefinal dataset contained 80 reanalyzed and 308 predicted concen-
trations for the 388 samples. For the 80 samples reanalyzed by LC-
HRMS, predictions of the corrected concentrations were strongly
correlated with the concentrations determined by reanalysis
(rs =0:94). The strong cross-validated correlation and the fact that
the samples were selected to be representative of the 388-sample set
suggested that predicted concentrations could serve as a reasonable
replacement for reanalyzing all samples. Ultimately, the corrected
concentrations for the 388-sample set were strongly correlated with

the 2018 (incorrect) concentrations (rs =0:98), suggesting that the
sample rank order was largely preserved.

Summary statistics for corrected PFO5DoA concentrations are
shown for 344 GenX Exposure Study participants in Wilmington
in 2017–2018 (Table 1). PFO5DoA was detected in all 80 reana-
lyzed samples and, after applying the predictive model, concentra-
tions exceeded the MRL in 339 of 344 participants (99%). The
median serum PFO5DoA concentration (9:2 ng=mL, bootstrap
SE= 0:35 ng=mL) was much higher than previously reported
(0:3 ng=mL).3 The median percent decrease in serum PFO5DoA
levels from November 2017 to May 2018 across 44 participants
was 27.4% [95% confidence interval ðCIÞ=18:3%, 36.5%]. In
addition, serum PFO5DoA levels in participants served with
treated Cape Fear River water (n=333) were significantly higher
(median= 9:3 ng=mL; range=ND, 51 ng=mL) than levels in par-
ticipants served with another water source (n=9, median= 3:4,
range=ND, 6:5 ng=mL) (p=0:0002).

Taking the corrected PFO5DoA values with our previous
results for other PFEAs, median serum concentration in the
Wilmington 2017–2018 population increased with increasing
number of−CF2O– groups in the chemical structure [i.e., PFO3OA
(median<MRL) <PFO4DA (median= 2:5 ng=mL) <PFO5DoA
(median= 9:2 ng=mL)]. PFO5DoA had the highest median concen-
tration of the PFAS quantified and contributed substantially to the
summed concentration of targeted PFAS inWilmington serum sam-
ples (Table 2). PFO5DoA concentrations were similar to perfluor-
ooctanesulfonic acid (PFOS) concentrations (median= 8:6 ng=mL;
IQR=5, 13:6 ng=mL). PFO5DoA and PFOS each contributed
∼30% to the summed PFAS concentration in serum; the next
highest contributor was PFOA (∼10%). For November 2017

Table 1. Summary statistics for corrected PFO5DoA concentrations in first serum sample from 344 Wilmington, North Carolina, residents in 2017–2018.

Category Group n n>MRLa (%)

PFO5DoA concentration (ng/mL)

10th percentile 25th percentile Median 75th percentile 95th percentile

Reanalyzed and predictedb Adults 289 285 (99) 3.5 5.6 10.1 16.3 28.7
Children 55 54 (98) 3.2 4.5 5.7 9.1 12.4
All 344 339 (99) 3.4 5.2 9.2 14.8 26.6

Reanalyzed onlyc All 80 80 (100) 2.3 4.5 8.7 14.8 25.5

Note: MRL, method reporting limit; PFO5DoA, perfluoro-3,5,7,9,11-pentaoxadodecanoic acid.
aThe MRL for the PFO5DoA reanalysis was 0:5 ng=mL.
bCorrected concentrations for the 344 serum samples are based on 72 reanalyzed sample concentrations and 272 sample concentrations predicted by regression modeling.
cConcentrations for 80 reanalyzed samples used to build regression model. Eight of the 80 participants whose samples were reanalyzed were repeaters; they had provided two blood
samples, and we reanalyzed their second sample but not their first. Thus, 72 reanalyzed sample concentrations were included in summary statistics for first serum sample.

Table 2. Summed mass concentrations of PFEAs (PFO3OA, PFO4DA, PFO5DoA, NVHOS, Nafion by-product 2) and legacy PFAS (PFHpA, PFOA, PFNA,
PFHxS, PFOS) in serum from 344 Wilmington, North Carolina, residents, 2017–2018.

Category

Concentration [ng/mL (percentage of total PFAS)]a

10th percentile 25th percentile Median 75th percentile 95th percentile
P

PFEAsb

Adults 5.3 (36) 8.9 (37) 16.2 (43) 27.6 (47) 46.7 (52)
Children 4.7 (40) 7.2 (41) 10.7 (46) 17.6 (55) 24.4 (51)
Overall 5.2 (37) 8.5 (40) 15.3 (45) 25.1 (46) 45.5 (53)P
legacy PFAS

Adults 8 (54) 12.2 (51) 20.8 (55) 29.8 (51) 47.8 (54)
Children 6.8 (58) 8.1 (47) 11.3 (48) 16.4 (51) 24 (50)
Overall 7.6 (54) 11.1 (52) 18.8 (55) 28.7 (53) 47.1 (55)P
all PFAS

Adults 14.9 23.9 37.9 58.6 89.4
Children 11.7 17.4 23.4 31.9 47.9
Overall 14.2 21.5 34.3 54.6 85.9

Note: Nafion by-product 2, ethanesulfonic acid, 2-[1-[difluoro(1,2,2,2-tetrafluoroethoxy)methyl]-1,2,2,2-tetrafluoroethoxy]-1,1,2,2-tetrafluoro-; NVHOS, 1,1,2,2-tetrafluoro-2-(1,2,2,2-
tetrafluoro-ethoxy)ethane sulfonate; PFAS, per- and polyfluoroalkyl substances; PFEA, per- and polyfluoroalkyl ether acid; PFHpA, perfluoroheptanoic acid; PFHxS, perfluorohexanesul-
fonic acid; PFNA, perfluorononanoic acid; PFO3OA, perfluoro-3,5,7-trioxaoctanoic acid; PFO4DA, perfluoro-3,5,7,9-butaoxadecanoic acid; PFO5DoA, perfluoro-3,5,7,9,11-pentaoxa-
dodecanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid.
aPercentage of total PFAS concentration (the sum of PFEAs and legacy PFAS analyzed for in this study) is shown in parentheses.
bThe PFEA term is synonymous with “fluoroethers,” which is the term we used in our previous publication.3
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participants (n=310), corrected PFO5DoA concentrations were
highly correlated with concentrations of Nafion by-product 2
(rs =0:87), perfluorohexanesulfonic acid (PFHxS; rs =0:73),
PFOA (rs =0:8), and perfluorononanoic acid (PFNA; rs =0:71).
In the time since we reported detecting PFO5DoA in Wilmington
residents’ serum, others have reported on PFO5DoA-exposed popu-
lations5–7 and results of animal studies of PFO5DoA toxicity.8
Further investigation of PFO5DoA exposure and potential health
effects inCape Fear River Basin residents9 is needed.
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